MYTUTOR SUBJECT ANSWERS

522 views

Differentiate: y = xsin(x)

This is a function which is in the form, 

y = f(x)g(x)

It's the product of two functions and so we must make use of the product rule. This is a simple formula which you have to remember:

dy/dx = f'(x)g(x) + f(x)g'(x).

In words: the derivative of first function multiplied by the original second function, plus, the derivative of the second function multiplied by the original first function.

In this question,

f(x) = x

g(x) = sin(x)

so we can find that, 

f'(x) = 1

g'(x) = cos(x)

and by substituting this into the formula for the product rule we get the answer:

dy/dx = sin(x) + xcos(x).

Oliver R. GCSE Maths tutor, A Level Maths tutor, GCSE Further Mathema...

12 months ago

Answered by Oliver, an A Level Maths tutor with MyTutor

Still stuck? Get one-to-one help from a personally interviewed subject specialist

182 SUBJECT SPECIALISTS

£24 /hr

Joe C.

Degree: Mathematics (Masters) - Bristol University

Subjects offered: Maths, Further Mathematics

Maths
Further Mathematics

“I'm a third year student at Bristol University studying a Masters Degree in Mathematics. I try to make my tutorials engaging, and tailor them to your individual needs so that we are working towards the grade you aspire to achieve! I'v...”

£22 /hr

Bryan P.

Degree: Mathematics (Bachelors) - Bristol University

Subjects offered: Maths, Further Mathematics

Maths
Further Mathematics

“I am currently a BSc Mathematics student at the University of Bristol and I am already no stranger to teaching.I have worked as a teaching assistant in my secondary school's maths department where I also led one-on-one sessions with ...”

£24 /hr

Barnaby W.

Degree: Mathematics (Masters) - Southampton University

Subjects offered: Maths, Further Mathematics

Maths
Further Mathematics

“ I have always enjoyed tutoring. I find that it gives me real satisfaction to see a child or student you have helped feel much more confident”

About the author

Oliver R.

Currently unavailable: for regular students

Degree: Economics and Mathematics (Bachelors) - Bristol University

Subjects offered: Maths, Further Mathematics

Maths
Further Mathematics

“About Me:I'm currently an undergraduate at the University of Bristol studying Economics & Mathematics (Joint Honours). I am one of those few who havea genuine love of studying Maths and hope that enthusiasm will help you in tutorials...”

You may also like...

Other A Level Maths questions

A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.

What is the derivative of x^x

Given that y = 5x^2 - 4/(x^3), x not equal to 0, find dy/dx.

Simplify (7+sqrt(5))/(sqrt(5)-1), leaving the answer in the form a+b*sqrt(5)

View A Level Maths tutors

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok