Differentiate: y = xsin(x)

This is a function which is in the form, 

y = f(x)g(x)

It's the product of two functions and so we must make use of the product rule. This is a simple formula which you have to remember:

dy/dx = f'(x)g(x) + f(x)g'(x).

In words: the derivative of first function multiplied by the original second function, plus, the derivative of the second function multiplied by the original first function.

In this question,

f(x) = x

g(x) = sin(x)

so we can find that, 

f'(x) = 1

g'(x) = cos(x)

and by substituting this into the formula for the product rule we get the answer:

dy/dx = sin(x) + xcos(x).

OR
Answered by Oliver R. Maths tutor

88748 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using partial fractions find the integral of (15-17x)/((2+x) (1-3x)^2 )


How do I differentiate something of the form a^x?


Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2


The equation " x^3-3x+1=0 " has three real roots. Show that one of the roots lies between −2 and −1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning