Find the gradient of the equation y=e^2x.ln(4x^2) when x=5.

>First know that you must differentiate to find the gradient. To differentiate this function you must use the product rule which is:>d/dx(f(x)g(x))=f(x)g'(x)+f'(x)g(x)>Now apply this rule to the formula where f(x)=e2x and g(x)=ln4x2>y=e2x.ln4x2>y' (this is another way of writing f'(x))= e2x.8x/4x2+2e2x.ln4x2>Now sub in x=5 and simplify:e2585/4(52)+2e25*ln4(52)=0.4e10+2e10*ln100

AS
Answered by Akshina S. Maths tutor

4044 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the necessary conditions for a random variable to have a binomial distribution?


A curve has equation y = f(x) and passes through the point (4, 22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7, use integration to find f(x), giving each term in its simplest form


Using the trigonometric identity (sinx)^2 + (cosx)^2 = 1, show that (secx)^2 = (tanx)^2 + 1 is also a trigonometric identity.


Find the derivative of the following expression: y=x^3+2x^2+6x+5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning