Binomial expansion of (1+4x)^5 up to x^2

This question can be treated like a normal binomial expansion question which is commonly seen at A level. The standard binomial expansion is (1+x)n = 1 + nx + (n(n-1)(x2))/2! where 2! is 2 factorialSo in this question let u=4x, n=5(1+u)^5 = 1 + 5u + (5)(4)(u2)/(2)(1)(1+u)5= 1 + 5u + 10u2now we need to substitute in u=4xso (1+4x)5 = 1 (5)(4)x + 10(4x)2(1+4x)5=1+20x+160x2

KI
Answered by Katherine I. Maths tutor

5035 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the tangent to the curve y = x^2 + 3x + 2 at x = 1


y' = (2x)/(y+1). Solve for y.


The equation of a line is y=3x – x^3 a) Find the coordinates of the stationary points in this curve, stating whether they are maximum or minimum points b) Find the gradient of a tangent to that curve at the point (2,4)


What is the chain rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning