Binomial expansion of (1+4x)^5 up to x^2

This question can be treated like a normal binomial expansion question which is commonly seen at A level. The standard binomial expansion is (1+x)n = 1 + nx + (n(n-1)(x2))/2! where 2! is 2 factorialSo in this question let u=4x, n=5(1+u)^5 = 1 + 5u + (5)(4)(u2)/(2)(1)(1+u)5= 1 + 5u + 10u2now we need to substitute in u=4xso (1+4x)5 = 1 (5)(4)x + 10(4x)2(1+4x)5=1+20x+160x2

KI
Answered by Katherine I. Maths tutor

4491 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = √(1 + 3x²) with respect to x


Find the area contained under the curve y =3x^2 - x^3 between 0 and 3


If x is a real number, what are the solutions to the quadratic: 4*x^2- 4*x+1 = 0


Given the function y = x^5 + x^3/2 + x + 7 Express the following in their simplest forms: i) dy/dx ii) ∫ y dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences