What are the values of x and y?

 a) 3x + 5y =  26  

b) 2x + 2y = 12

Step One: We need to find a way to equate either the x terms of the y terms in each equation. Multiply equation a) by 2 and equation b) by 3 to form the following equations.

a) 6x + 10y = 52

b) 6x + 6y = 36

Step Two: Take equation b) from equation a) to eliminate the x component.

  a) 6x + 10y = 52

 - b) 6x + 6y = 36

    0x    + 4y = 16

                 y = 4

Step Three: substitute the value of y into either equation to find the value of x.

b) 2x + 2y = 12

    2x + (2x4) =12

    2x + 8 = 12

    2x = 4

    x = 2

x=2 y=4                

 

EA
Answered by Emily A. Maths tutor

143817 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you simplify a surd?


HIGHER TIER a) Factorise the following equation into two bracket form: 2x^2-5x-12. b)2x^2-5x-12=0. Solve this equation to find the values of x, using your answer to part a). BONUS c) Sketch the function y=2x^2-5x-12, showing any x intercepts


There is a bag of blue, red, and white counters. 1/6 of the bag is blue counters. 1/4 of the bag is red counters. What is the smallest number of white counters that could possibly be in the bag.


What is the lowest common multiple and the highest common factor of 120 and 150?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning