Find a solution to sec^(2)(x)+2tan(x) = 0

This question is a quadratic equation in hiding. The first step to solving this would be to expand sec^(2)(x) into 1 + tan^(2)(x) as they are equivalent. This can be derived by dividing sin^(2)(x) + cos^(2)(x) = 1 by cos^(2)(x). This will give us the equation tan^(2)(x) + 2tan(x) +1 = 0. If tan(x) is set to equal z, we end up with the equation z^(2)+2z+1 = 0, which gives us the solution z = -1 when the quadratic formula is used. If we substitute tan(x) back in, we end up with tan(x) = -1, which gives us the solution x = -45 when our calculators are used.

MB
Answered by Mohamed B. Maths tutor

5431 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = (4x + 1)/(x - 2) with x > 2. Find a value for 'x' such that f'(x) (first derivative of f(x) with respect to x) is equal to -1.


Find the integral of (3x^2+4x^5-7)dx


What are the necessary conditions for a random variable to have a binomial distribution?


x = 3t - 4, y = 5 - (6/t), t > 0, find "dy/dx" in terms of t


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning