Use integration to find I = ∫ xsin3x dx

Use integration by parts, let U = x, the derivative of U = 1, let the derivative of V = sin3x and intergrate the derivative of V to arrive at V = (-1/3)(cos3x). Substitute the value into the formula uv − ∫ vdu dx dx, arrive at I = (x)(-1/3)(cos3x) - ∫(1)(-1/3)(cos3x)dx which can be written us I = (-x/3)(cos3x) +∫(1/3)(cos3x)dx. ∫(1)(1/3)(cos3x)dx = (1/9)(sin3x). Now put that into the original equation giving the final answer I = (-x/3)(cos3x)+ (1/9)(sin3x) + c,

ZL
Answered by Zifeng L. Maths tutor

6518 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


The points A and B have coordinates (1, 6) and (7,− 2) respectively. (a) Find the length of AB.


If y=(a^(Sinx)) where a and k are given constants, find dy/dx in terms of a and x


How do I multiply 2 matrices?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning