Q4 on 2017 Edexcel C4 paper, concerns differentiation of multiple variables.

(a) Asks to differentiate an equation C: 4x2 - y3 - 4xy + 2y = 0Then use the fact that point P (-2,4), lies on C to find an expression for dy/dx Differential of form 8x - 3y2(dy/dx) - (4y + 4x(dy/dx)) + 2yln2(dy/dx) = 0Rearrange and substitute to find dy/dx(b) Asks to find the point where the Normal to C at P intersects the y axis. (form of p + qln2)-1/(dy/dx) to find gradient of normal to C at P, then use x = 0 at Y axis intercept to find y coordinate.

AW
Answered by Alexander W. Maths tutor

3194 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A stone, of mass m, falls vertically downwards under gravity through still water. At time t, the stone has speed v and it experiences a resistance force of magnitude lmv, where l is a constant.


Use integration by parts to find the value of the indefinite integral (1/x^3)lnx ; integration with respect to dx


The curve C has equation (4x^2-y^3+3^2x)=0. The point P (0,1) lies on C: what is the value of dy/dx at P?


Differentiate the equation y = (1+x^2)^3 with respect to (w.r.t.) x using the chain rule. (Find dy/dx)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning