Solve: 2 sin(2x) = (1-sin(x))cos(x) for 0<x<2*Pi and give any values of x, if any, where the equation is not valid

Double angle formula:Sin(2x) = 2sin(x)*cos(x)==> 2sin(x)*cos(x) = (1-sin(x))*cos(x)       (2sin(x)-1+sin(x))*cos(x) = 0(3sin(x) - 1)*cos(x) = 0     i) cos(x) = 0,  ii) 3sin(x) = 1 ==> sin(x) = 1/3         i) x = Pi/2, 3Pi/2    ii) x = 0.3398 Rad,  2.8018 Rad

HF
Answered by Henry F. Maths tutor

4976 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 2sin^3(x)+3.


How do I integrate fractions of quadratic or cubic terms?


Use the double angle formulae and the identity cos(A+B)≡cos(A)cos(B)−sin(A)sin(B) to obtain an expression for cos 3x in terms of cos x only


Differentiate y=(5x^4)cos(2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning