Solve the simultaneous equation 2x + y = 18 and x - y = 6

With linear simultaneous equations the best thing to do is find one variable first and in this question we will find x first. We will start by rearranging the second equation to give us y = x - 6. Now we will substitute this into the equation above so there is only one unknown which is x. The first equation now becomes 2x + (x -6) = 18. If we open up the brackets we then have 2x + x - 6 = 18 which simplifies to 3x - 6 = 18. We then move the six to the other side which means we add 6 to the 18. The equation is then 3x = 24. We then divide both sides by three and so x= 8. Now that we’ve found x, finding y is the next step. We use the value of x in the second equation. So it’s now 8 - y = 6. So we want a positive y on one side so we move it to the other side to get 8 = 6 + y. Finally to find y we subtract 6 but from both sides so we get y =2. We’ve solved the simultaneous equation!

RO
Answered by Rita O. Maths tutor

5804 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you break down a wordy question (e.g. Aled has three concrete slabs. Two slabs square, of length x, & the third rectangular of dimensions 1m & x+1m. Show 2x^2 +x-6=0 & Solve this)


Expand and simplify: 5(x + 3) - 3(y - 2)


Work out the gradient and y-intercept of the straight line with points A(3,8) and B(-2,-7)


Solve the simultaneous equations, x+y = 16, 5x -2y = 17


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences