How can I find all the solutions to cos(3x) = sqrt(2)/2 for 0<=x<=2pi ?

Finding the solutions to trig equations begins in a very similar way to when we do it at GCSE. We start with:cos(2x) = 2-1/2 0 <= x <=piand correct our range, as we are interested in 2x not just x: 0 <= 2x <= 2pi .Then we find our first solution 2x = cos-1(2-1/2) = pi/4So we have one solution: 2x = pi/4. Our next solution comes from looking at the graph of cos(x), which is symmetrical around the y-axis. From this we can see that 2x = -pi/4 will also be a solution. Then we can add 2pi to each solution until we leave our range. This gives us a set of answers: 2x = pi/4, 7pi/4. We don't need -pi/4 or 9pi/4 because they are not in our range.So x = pi/8, 7pi/8.

TU
Answered by Thomas U. Maths tutor

7125 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary point of the curve y = -2x^2 + 4x.


A man travels 360m along a straight road. He walks for the first 120m at 1.5ms-1, runs the next 180m at 4.5ms-1, and then walks the final 60m at 1.5ms-1. A women travels the same route, in the same time. At what time does the man overtake the women?


(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


How do I integrate by parts?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning