How can I find all the solutions to cos(3x) = sqrt(2)/2 for 0<=x<=2pi ?

Finding the solutions to trig equations begins in a very similar way to when we do it at GCSE. We start with:cos(2x) = 2-1/2 0 <= x <=piand correct our range, as we are interested in 2x not just x: 0 <= 2x <= 2pi .Then we find our first solution 2x = cos-1(2-1/2) = pi/4So we have one solution: 2x = pi/4. Our next solution comes from looking at the graph of cos(x), which is symmetrical around the y-axis. From this we can see that 2x = -pi/4 will also be a solution. Then we can add 2pi to each solution until we leave our range. This gives us a set of answers: 2x = pi/4, 7pi/4. We don't need -pi/4 or 9pi/4 because they are not in our range.So x = pi/8, 7pi/8.

TU
Answered by Thomas U. Maths tutor

7560 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the function 1/sqrt(9-x^2) with respect to x


Express (16x+78)/(2x^2+25x+63) as two fractions


Why does d/dx (tan(x)) = sec^2(x)?


The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning