Find the radius and centre of the circle given x^2+4x+y^2+2y=20

Complete the square:x2+4x gives (x+2)2-4y2+2y gives (y+1)2 -1Therefore,(x+2)2-4+(y+1)2 -1=20Rearranging gives:(x+2)2+(y+1)2 =25Comparing to the standard equation for a circle:(x-a)2+(y-b)2 =r2Means the radius = 5 (sqrt(25)) and the centre of the circle is (-2,-1)

SC
Answered by Stanley C. Maths tutor

3771 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 3cos(theta) + 5sin(theta) in the form Rcos(theta - alpha) where R and alpha are constants, R>0 and 0<alpha<90. Give the exact value of R and the value of alpha to 2dp.


Two particles, A and B, are moving directly towards each other on a straight line with speeds of 6 m/s and 8 m/s respectively. The mass of A is 3 kg, and the mass of B is 2 kg. They collide to form a single particle of speed "v" m/s. Find v.


If y = 4x^3 - 6x^2 + 7 work out dy/dx for this expression


Find the gradient of y^2 +2xln(y) = x^2 at the point (1,1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences