Solve the simultaneous equations: (1) x^2 + y^2=41 and (2) y=2x-3

First we substitute one x or y into the other equation. The easiest one to put in in this case would be the y in equation (2). So putting the y into (1) you get x^2 + (2x-3)^2=41. Then we expand out the brackets using FOIL: 5x^2-12x-32=0. we then would factorise this by finding two numbers that times to give 160 and add to give -12. these would be -20 and 8. Because we have a 5x^2 this would factorise to give (5x+8)(x-4)=0. The solutions of these would be x=-8/5 and x=4, and then substituting the xs back into one equation (this can be either) to give y=-31/5 and y=5.

OA
Answered by Olivia A. Maths tutor

4649 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove algebraically that (4n + 1)² − (2n − 1) is an even number for all positive integer values of n.


A cuboid has edge 7 centimetres, 5 centimetres and a total surface area of 142 centimetres squared. A larger, similar cuboid has a shortest edge of 12 centimetres. Find the third edge of the smaller cuboid and the volume of the larger cuboid.


Solve the following simultaneous equations: A. 2x-2y=18 and B. 3x+y=23


A square based pyramid with corners ABCD has side length 6 cm. The distance from the centre of the square (C) to the top vertex of the pyramid (V) is 4 cm. Work out the total surface area of the pyramid.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences