Find the first derivative of f(x) = tan(x).

First, use the trigonometric identity tan(x) = sin(x) / cos(x) to rewrite the function. It should now be very apparent that f(x) is now actually a ratio of two functions, and therefore the quotient rule will be required to differentiate it. Split f(x) into the two functions, g(x) = sin(x) as the numerator, and h(x) = cos(x) as the denominator. Now differentiate g(x) and h(x) with respect to x, giving you g'(x) = cos(x) and h'(x) = -sin(x). Then, using the chain rule, f'(x) = (g'(x)*h(x) - g(x)*h'(x)) / (h(x)2), substitute in the values. This will give you: f'(x) = (cos2(x) + sin2(x)) / cos2(x). While this is the correct answer, it needs to be simplified further using the trig identity cos2(x) + sin2(x) = 1.Therefore the final answer is: f'(x) = 1 / cos2(x) = sec2(x).

HR
Answered by Henry R. Maths tutor

2962 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact solution to the equation: ln(3x-7) =5


Using the substitution u = 2 + √(2x + 1), or other suitable substitutions, find the exact value of 4 0 1 ∫ 2 (2 1) +√ +x dx giving your answer in the form A + 2ln B, where A is an integer and B is a positive constant


Find the area beneath the curve with equation f(x) = 3x^2 - 2x + 2 when a = 0 and b = 2


Differentiate x^3⋅cos(5⋅x) with respect to x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences