integrate 1/(x^2+4x+13)

The first step is to notice that this is a standard integral in the form of 1/(x^2+a^2). In order to reach this form, we must first complete the square. Then we have 1/(x+2)^2-4+13=1/(x+2)^2+9. We can then use the substitution u = x+2. du=dx to obtain 1/u^2+3^2, our required form. Using a formula booklet, we see that this integrates into 1/3 arctan(u/3). We then substitute for u giving 1/3 arctan(x+2)/3

JT
Answered by Jim T. Maths tutor

9616 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0


Integrate $$\int xe^x \mathop{\mathrm{d}x}$$.


Differentiate x^2 from first principles


Find and classify all the stationary points of the function f(x) = x^3 - 3x^2 + 8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning