integrate 1/(x^2+4x+13)

The first step is to notice that this is a standard integral in the form of 1/(x^2+a^2). In order to reach this form, we must first complete the square. Then we have 1/(x+2)^2-4+13=1/(x+2)^2+9. We can then use the substitution u = x+2. du=dx to obtain 1/u^2+3^2, our required form. Using a formula booklet, we see that this integrates into 1/3 arctan(u/3). We then substitute for u giving 1/3 arctan(x+2)/3

JT
Answered by Jim T. Maths tutor

9201 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation of a curve is xy^2= x^2 +1. Find dx/dy in terms of x and y, and hence find the coordinates of the stationary points on the curve.


Differentiate sin(x)*x^2


What is the integral of x sin(x) dx?


Differentiate the function f(x) = x*sin(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences