integrate 1/(x^2+4x+13)

The first step is to notice that this is a standard integral in the form of 1/(x^2+a^2). In order to reach this form, we must first complete the square. Then we have 1/(x+2)^2-4+13=1/(x+2)^2+9. We can then use the substitution u = x+2. du=dx to obtain 1/u^2+3^2, our required form. Using a formula booklet, we see that this integrates into 1/3 arctan(u/3). We then substitute for u giving 1/3 arctan(x+2)/3

JT
Answered by Jim T. Maths tutor

9349 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find, using calculus, the x coordinate of the turning point of the curve y=e^(3x)*cos(4x) pi/4<x<pi/2 (Edexcel C3)


Find the equation of the normal to the curve y = 2x^2 -3x +7 at the point x = 1.


The curve C has equation y = 3x^4 – 8x^3 – 3 Find (i) dy/dx (ii) the co-ordinates of the stationary point(s)


For what values of k does the graph y=x^(2)+2kx+5 not intersect the x-axis


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning