integrate 1/(x^2+4x+13)

The first step is to notice that this is a standard integral in the form of 1/(x^2+a^2). In order to reach this form, we must first complete the square. Then we have 1/(x+2)^2-4+13=1/(x+2)^2+9. We can then use the substitution u = x+2. du=dx to obtain 1/u^2+3^2, our required form. Using a formula booklet, we see that this integrates into 1/3 arctan(u/3). We then substitute for u giving 1/3 arctan(x+2)/3

JT
Answered by Jim T. Maths tutor

9916 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I choose which term do I differentiate/integrate when I am integrating by parts


How do you integrate by parts?


Integrate by parts the following function: ln(x)/x^3


Find the exact solution, in its simplest form, to the equation 2ln(2x+1) - 10 = 0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning