How can you integrate ln(x) with respect to x?

We can use substitution for this one. Take y=ln(x) to be equal to y= 1 x ln(x)Set u=ln(x) and dv/dx=1Compute du/dx and v:du/dx=1/x and v=xUse given formula - ∫ udv/dx dx = uv - ∫ vdu/dx dx= xln(x) - ∫ x/x dx= xln(x) - x (+C)This is the complete proof, however this is an easy one to remember and may be useful to memorise.

SH
Answered by Samuel H. Maths tutor

3431 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The region below the curve y = e^x + e^(-x) and the lines x = 0, x = ln4 is rotated 2π radians about the x-axis. Find the volume of the resulting solid.


A curve has the equation, 6x^2 +3xy−y^2 +6=0 and passes through the point A (-5, 10). Find the equation of the normal to the curve at A.


Find the max/min value of the function: f(x) = 5x^2 - 20x + 15


Find both stationary points for y= 4x^(3)-3x^(2)-60x+24. Also find the nature of those points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning