How can you integrate ln(x) with respect to x?

We can use substitution for this one. Take y=ln(x) to be equal to y= 1 x ln(x)Set u=ln(x) and dv/dx=1Compute du/dx and v:du/dx=1/x and v=xUse given formula - ∫ udv/dx dx = uv - ∫ vdu/dx dx= xln(x) - ∫ x/x dx= xln(x) - x (+C)This is the complete proof, however this is an easy one to remember and may be useful to memorise.

SH
Answered by Samuel H. Maths tutor

2903 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate ln(x/7) with respect to x


Find the equation of the normal to the curve at the point (1, -1 ): 10yx^2 + 6x - 2y + 3 = x^3


Differentiate 3x^2 with respect to x


Sketch the graph y=Ax^2 where A is a constant


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences