what is d(2x^3)/dx?

the differential of a function y=2x^3 is the rate of change of that function. finding the differential is done by following the steps below:1) bring down the power of the x term and multiply it by the term in front of the x:this will give a term of 6 in front of the x in this case as 2x3=62) minus one from the power of the x. this will give a value of 2 in this case3) the overall answer is thus 6x^2

CZ
Answered by Charlotte Z. Maths tutor

4169 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

what does it mean if "b^2 - 4ac < 0" for a quadratic equation (eg y = a*x^2 + b*x + c)


Find the first and second derivatives of: y = 6 - 3x -4x^-3, and find the x coordinates of the line's turning points


Sketch the function (x^4 + 2x^3 - x -2)/(x+2)


Find the equation of the tangent to: y = X^2 + 3x + 2 at the point (2,12)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning