what is d(2x^3)/dx?

the differential of a function y=2x^3 is the rate of change of that function. finding the differential is done by following the steps below:1) bring down the power of the x term and multiply it by the term in front of the x:this will give a term of 6 in front of the x in this case as 2x3=62) minus one from the power of the x. this will give a value of 2 in this case3) the overall answer is thus 6x^2

CZ
Answered by Charlotte Z. Maths tutor

3520 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(ii) Prove by induction that, for all positive integers n, f(n) = 3^(3n–2) + 2^(3n+1) is divisible by 19


Solve the equation 2x^3 - 5x^2 - 4x + 3 = 0.


What is the partial fraction expansion of (x+2)/((x+1)^2)?


Differentiate this equation: xy^2 = sin(3x) + y/x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences