A curve has the equation y = 2x cos(3x) + (3x^2-4) sin(3x). Find the derivative in the form (mx^2 + n) cos(3x)

y = 2x cos(3x) + (3x2-4) sin(3x)
dy/dx = (2x x -sin(3x) x 3) + (2 x cos(3x)) + (6x sin(3x)) + ((3x2-4) cos(3x) x 3)
dy/dx = -6x sin(3x) + 2 cos (3x) + 6x sin(3x) + (9x2-12) cos(3x)
dy/dx = (9x2-12 + 2) cos (3x) = (9x2-10) cos (3x)
m = 9n = -10

TL
Answered by Thomas L. Maths tutor

8966 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate x*ln(x)


The equation of a circle is x^2-6x+y^2+4y=12. Complete the square to find the centre and radius of the circle.


Using Integration by Parts, find the indefinite integral of ln(x), and hence show that the integral of ln(x) between 2 and 4 is ln(a) - b where a and b are to be found


Integrate ln(x) by parts then differentiate to prove the result is correct


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning