A curve has the equation y = 2x cos(3x) + (3x^2-4) sin(3x). Find the derivative in the form (mx^2 + n) cos(3x)

y = 2x cos(3x) + (3x2-4) sin(3x)
dy/dx = (2x x -sin(3x) x 3) + (2 x cos(3x)) + (6x sin(3x)) + ((3x2-4) cos(3x) x 3)
dy/dx = -6x sin(3x) + 2 cos (3x) + 6x sin(3x) + (9x2-12) cos(3x)
dy/dx = (9x2-12 + 2) cos (3x) = (9x2-10) cos (3x)
m = 9n = -10

TL
Answered by Thomas L. Maths tutor

8675 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: y=x+1, x^2+y^2=13


Solving 2tan(x) - 3sin(x) = 0 for -pi ≤ x < pi


3(a+4)=ac+5f. Rearrange to make a the subject.


How would you differentiate f(x) = 2x(3x - 1)^2 using the chain rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning