What is the indefinite integral of ln(x) ?

We can use integration by parts to solve this question. If we look at the formula for Integration by parts: ∫u(dv/dx)dx = uv - ∫ v (du/dx) dx, we see that u must be multiplied by something else so therefore, when we make u = ln(x), we put (dv/dx) = 1 (This is because ln(x)1 is still ln(x)). So in order to get v we integrate 1 with respect to x, and we get x. So, u = ln(x), v = x, (du/dx) = 1/x, (dv/dx) = 1.
And therefore, substituting everything into the formula , we get: ln(x) * x - ∫x
(1/x) dx. It follows through that ∫x*(1/x) dx becomes ∫1 dx which integrates to x. Putting all the parts together gives: xln(x)-x. We must also remember the constant of integration, and so, the final answer becomes: xln(x)-x+C.

DM
Answered by Dawud M. Maths tutor

4863 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the two real roots of the equation x^4 -5=4x^2 Give the roots in an exact form.


Find the equation of the line through the following points: (-2, -3) and (1, 5)


When trying to solve inequalities (e.g. 1/(x+2)>x/(x-3)) I keep getting the wrong solutions even though my algebra is correct.


How can you factorise expressions with power 3 or higher?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning