Solve the equation 3a^2+4a+1=3 for all values of a. Give your answers to 3 significant figures.

First take the 3 over the other side to make the right hand side zero, turning it into a homogeneous equation: 3a2+4a-2=0. Since the expression on the left hand side cannot be factorised, we have to use quadratic formula. Applying the quadratic formula gives the following solutions for a: a1= (-4 + sqrt(42 - (4 x 3 x -2)))/ (2 x 3) = (-4 + sqrt(40) / 6 = 0.3874... and a2= (-4 - sqrt(42 - (4 x 3 x -2)))/ (2 x 3) = (-4 - sqrt(40) / 6 = -1.7207... . Hence, final solutions are a = 0.387 and a = -1.72.

NA
Answered by Nida A. Maths tutor

3621 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the coordinates where the curve f(X)= X^2+X-6 touches the x axis using factorisation.


What is BODMAS?


Show x^2 + 8x +15 = 0 in the form of (x+b)^2 +c (complete the square) and then solve the equation


A rectangle has the length of (2x + 5) and the width of (3x - 2). The perimeter of the rectangle is 36cm. Find the length and width of this rectangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning