Solve the equation 3a^2+4a+1=3 for all values of a. Give your answers to 3 significant figures.

First take the 3 over the other side to make the right hand side zero, turning it into a homogeneous equation: 3a2+4a-2=0. Since the expression on the left hand side cannot be factorised, we have to use quadratic formula. Applying the quadratic formula gives the following solutions for a: a1= (-4 + sqrt(42 - (4 x 3 x -2)))/ (2 x 3) = (-4 + sqrt(40) / 6 = 0.3874... and a2= (-4 - sqrt(42 - (4 x 3 x -2)))/ (2 x 3) = (-4 - sqrt(40) / 6 = -1.7207... . Hence, final solutions are a = 0.387 and a = -1.72.

NA
Answered by Nida A. Maths tutor

3646 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the quadratic equation x^2+5x+6=0


Find the length of AB from the right-angle triangle ABC. Angle ACB = 40 degrees and side BC = 15cm.


Solve 3(3x - 2) = 5x + 10


How do I find roots of a quadratic equation when I can't factorise?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning