Solve the equation 3a^2+4a+1=3 for all values of a. Give your answers to 3 significant figures.

First take the 3 over the other side to make the right hand side zero, turning it into a homogeneous equation: 3a2+4a-2=0. Since the expression on the left hand side cannot be factorised, we have to use quadratic formula. Applying the quadratic formula gives the following solutions for a: a1= (-4 + sqrt(42 - (4 x 3 x -2)))/ (2 x 3) = (-4 + sqrt(40) / 6 = 0.3874... and a2= (-4 - sqrt(42 - (4 x 3 x -2)))/ (2 x 3) = (-4 - sqrt(40) / 6 = -1.7207... . Hence, final solutions are a = 0.387 and a = -1.72.

NA
Answered by Nida A. Maths tutor

3872 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove algebraically that the square of any odd number is always also an odd number.


Rearrange v = u + at to make t the subject of the formula


A bonus of £2100 is shared by 10 people who work for a company. 40% of the bonus is shared equally between 3 managers. The rest of the bonus is shared equally between 7 salesmen. One of the salesmen says, “If the bonus is shared equally between all 10


200 pupils are taking a school trip. Some are flying, some are taking the bus. There are three times as many boys going as girls. One third of the boys going are flying. How many boys are getting the bus?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning