Differentiate with respect to x: y = xln[2x]

This is an example of a question where we would have to use the product rule for differentiation, because we have two functions multiplied together ( x and ln(2x) ).If we have: y = uv, where u and v are functions of x then the product rule tells us that dy/dx = uv' + vu'. So, if u = x and v = ln[2x] then u' = 1 and v' = 1/x . Remember that the differential of ln(f(x)) = f'(x) / f(x)Then, applying the product rule, we have that dy/dx = (x) (1/x) + (ln(2x)) (1) = 1 + ln(2x) Our final answer is: 1 + ln(2x)

MA
Answered by Muhammed Ali M. Maths tutor

5668 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (3x^2+2x^-1) with respect to x in the range of K to 3 and explain why K cannot be 0


the line L goes through the points A (3,1) and B(4,-2). Find the equation for L.


By consdering partial fractions find the integral of (1-x)/(5x-6-x^2) between x = 1 and x = 0, give your answer in an exact form.


A block of mass 5kg is on a rough slope inclined at an angle of 30 degrees to the horizontal, it is at the point of sliding down the slope. Calculate the coefficient of friction between the block and the slope.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning