The volume, V, of water in a tank at time t seconds is given by V = 1/3*t^6 - 2*t^4 + 3*t^2, for t=>0. (i) Find dV/dt

The differential of a function is is rate of range of that function. Therefore to find dV/dt, we are finding the rate of change of the volume per unit time.Recall, in order to differentiate a term, e.g. xa1) First multilply the term by the power, axa2) Then reduce the power by one, to a-1, axa-1d/dx(xa) = axa-1 <--- summary of processNow we just need to apply this rule individually to each of our terms.First term therefore becomes:1/3t6 --> 6/3t6 --> 2t5Eventually you will get the answer by following this with the other terms:dV/dt = 2t5 - 8t3 + 6t

SW
Answered by Samuel W. Maths tutor

7420 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 2(x-1)/(x^2-2x-3) - 1/(x-3) as a fraction in its simplest form.


The curve C has a equation y=(2x-3)^5; point P (0.5,-32)lies on that curve. Work out the equation to the tangent to C at point P in the form of y=mx+c


f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


Find y if dy/dx = y² sec²(x), given that y(0) = 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning