The equation of the line L1 is y = 3x – 2 . The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.

In order for two lines to be parallel, they need to have the same gradient (m). The gradient (m) is the coefficient of x in the line equation y=mx+c. Therefore, the gradient of L1 is 3 since 3 is the coefficient of x. For L2, you'll need to rearrange the equation so that you get it in the form of y=mx+c. So the first step would be to move -9x+5 to the right hand side: 3y=9x-5. Next, you'll have to divide everything by the coefficient of y (3). Therefore, you'll get y=3x-5/3. Now the gradient of L2 is 3 because x's coefficient is 3 and this is the same for L1 so the lines are parallel.

AK
Answered by Asimina K. Maths tutor

4005 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Northern Bank has two types of account. Both accounts pay compound interest. Cash savings account: Interest 2.5% per annum Shares account: Interest 3.5% per annum Ali invests £2000 in the cash savings account. Ben invests £1600 in the shares account.


v^2 = u^2 + 2as u = 12 a = –3 s = 18 (a) Work out a value of v. (b) Make s the subject of v^2 = u^2 + 2as


what is differentiation for?


Find the length of the longest side of a right angled triangle with the two smaller sides equal to 8 and 15.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning