Ayo is 7 years older than Hugo. Mel is twice as old as Ayo. The sum of their three ages is 77 Find the ratio of Hugo's age to Ayo's age to Mel's age.

  1. Hugo = x Ayo = x + 7 (as he is 7 years old than Hugo's age) Mel = 2 multiplied by (x +7) as she is twice as old as Ayo2) If their ages combined equals 77, you add up all the algebraic equations and set it equal to 77 as so; x + (x+7) + 2(x+7)=77.3) You now collect all the like terms e.g. 4x + 21=77 and then solve for x e.g. x= (77-21)/4=144) Then substitute this number back into the original equations and get the ages: Hugo = 14, Ayo = 21 and Mel = 425) Finally, set these out as a ratios - 14: 21: 42 and divide by 7 as they are all multiples of 7 and get the ratio as 2: 3: 6.
JS
Answered by Jeenali S. Maths tutor

5201 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I expand (3x + 6)(x + 2) ?


Solve the following simultaneous equations: 2y+x=8 , 1+y=2x


Write down 56 as the product of its prime factors.


Factorise fully 8y + 4y^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences