How can I find x and y?

Many students ask how they can they find 2 unknowns,given 2 simple equations. I'll try to focus in this answer on giving students a tool which they can use to solve ANY 2 simple equations with one solution.Let's take an example:
5x+y=22 and 3x+4y=20
In short,the plan is to:
1.) Write y in terms of x from the first equation
2.) Substitute it in the second one, so that we will get only an equation in function of x
3.)Then, find x from it.
4.)Now, we can substitute x's value in the first equation and find y.
Concrete:
1.) Write y in terms of x from the first equation
From 5
x+y=22 we get that y=22-5x.
2.) Substitute it in the second one, so that we will get only an equation in function of x
Substituing y in the second equation gives :
3
x+4*(22-5x)=20.
3.)Then, find x from it. 
We now rearrange it ,so:
3
x+88-20x=20(we opened the parenthesis)
Therefore:
88-17
x=20(we gave x as common factor and had x*(3-20) which is -17x)
Therefore by adding 17
x and subtracting 20 we get :
68=17x.
By dividing the equation with 17 we have x=4.
4.)Now, we can substitute x's value in the first equation and find y. 
So we substitute it in the first equation,so 5
x+y=22 gives 54+y=22,so y=2. 
The beauty of this method stays in the fact that it can be used to solve any problem like that.
Now,with some practice,you should be able to find the solution of a similar problem. Here are some exercises which you could use to practice some more :
1.) 3
x+7y=10 and x+5y=6
2.) x+y=9 and 3x+4x=32
3.) x+y=6 and x+5y= 26
4.) 4
y=28 and 2x+y=9
5.) 6
x-2y=72 and x+2y=12
I would finally recommend not to memorise the steps of this method,but to understand them. Good luck !
Solutions:
1.) x=1 and y=1
2.) x=4 and y=5
3.) x=1 and y=5
4.) x=1 and y=7
5.) x=12 and y=0

MG
Answered by Marco-Iulian G. Maths tutor

8396 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove algebraically that the straight line with equation x - 2y = 10 is a tangent to the circle with equation x^2 + y^2= 20


Solve the simultaneous equations: (1) 4x + y = 7 and (2) x - 3y = 5


A cycle race is 3069.25 miles. Juan travels at a speed of 15.12 miles per hour. He cycles for 8 hours a day. Estimate how many days Juan will take to complete the race.


A cuboid has edge 7 centimetres, 5 centimetres and a total surface area of 142 centimetres squared. A larger, similar cuboid has a shortest edge of 12 centimetres. Find the third edge of the smaller cuboid and the volume of the larger cuboid.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning