MYTUTOR SUBJECT ANSWERS

443 views

How can I find x and y?

Many students ask how they can they find 2 unknowns,given 2 simple equations. I'll try to focus in this answer on giving students a tool which they can use to solve ANY 2 simple equations with one solution.Let's take an example:

5*x+y=22 and 3*x+4*y=20

In short,the plan is to:

1.) Write y in terms of x from the first equation

2.) Substitute it in the second one, so that we will get only an equation in function of x

3.)Then, find x from it.

4.)Now, we can substitute x's value in the first equation and find y.

Concrete:

1.) Write y in terms of x from the first equation

From 5*x+y=22 we get that y=22-5*x.

2.) Substitute it in the second one, so that we will get only an equation in function of x

Substituing y in the second equation gives :

3*x+4*(22-5*x)=20.

3.)Then, find x from it. 

We now rearrange it ,so:

3*x+88-20*x=20(we opened the parenthesis)

Therefore:

88-17*x=20(we gave x as common factor and had x*(3-20) which is -17*x)

Therefore by adding 17*x and subtracting 20 we get :

68=17*x.

By dividing the equation with 17 we have x=4.

4.)Now, we can substitute x's value in the first equation and find y. 

So we substitute it in the first equation,so 5*x+y=22 gives 5*4+y=22,so y=2. 

The beauty of this method stays in the fact that it can be used to solve any problem like that.

Now,with some practice,you should be able to find the solution of a similar problem. Here are some exercises which you could use to practice some more :

1.)  3*x+7*y=10 and x+5*y=6

2.)  x+y=9 and 3*x+4*x=32

3.)  x+y=6 and x+5*y= 26

4.) 4*y=28 and 2*x+y=9

5.) 6*x-2*y=72 and x+2*y=12

I would finally recommend not to memorise the steps of this method,but to understand them. Good luck !

Solutions:

1.) x=1 and y=1

2.) x=4 and y=5

3.) x=1 and y=5

4.) x=1 and y=7

5.) x=12 and y=0

Marco-Iulian G. GCSE Maths tutor, Uni Admissions Test .MAT. tutor, A ...

1 year ago

Answered by Marco-Iulian, a GCSE Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

330 SUBJECT SPECIALISTS

£18 /hr

Laura H.

Degree: Italian and English Literature (Masters) - Edinburgh University

Subjects offered: Maths, English Literature+ 1 more

Maths
English Literature

“About MeI am an Italian and English Literature student at the University of Edinburgh. I have a passion for all kinds of literature, and I believe that the more you study a text, the more you appreciate it. I have also enjoyed Maths ...”

£18 /hr

Tiarnan B.

Degree: MChem (Masters) - York University

Subjects offered: Maths, Geography+ 2 more

Maths
Geography
Chemistry
-Personal Statements-

“About Me: I am a student of Chemistry at the University of York studying for a masters degree and am a self-confessed science nerd! My goal is to give you the help you need, build your confidence and push you to be the best you can. A...”

£18 /hr

Matthew M.

Degree: Engineering Mathematics (Bachelors) - Bristol University

Subjects offered: Maths, Law+ 1 more

Maths
Law
History

“I am an Engineering Math student at the University of Bristol. I have a range of interests, which cover maths, history and law, and would love to help others in these areas as well as encourage the same enthusiasm I have in others! I a...”

MyTutor guarantee

About the author

Marco-Iulian G.

Currently unavailable: for regular students

Degree: Mathematics&Computer Science (Masters) - Bristol University

Subjects offered: Maths, Further Mathematics + 2 more

Maths
Further Mathematics
.STEP.
.MAT.

“I'm in my first year at University of Bristol, studying Mathematics and Computer Science MEng. From an early age I started to participate in lots of contests and maths olympiads, and the experience I achieved along the way enriched bo...”

You may also like...

Posts by Marco-Iulian

How can I find x and y?

How do I make calculations with percentages?

How do I solve a quadratic equation?

How do you solve this problem?

Other GCSE Maths questions

Mark wants to borrow money to buy a car. His bank offers him a loan of £5,000 to be payed back over 3 years at 4% compound interest. a) Work out the interest acquired in the 2nd year. b) In total how much will Mark end up paying back the bank?

How do I solve 3x + y = 11 & 2x + y = 8?

Expand and simplify (x+6)(x-6)

How do I expand (x+a)(x+b)? (plus example)

View GCSE Maths tutors

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok