A curve has equation y = x^3 - 6x^2 - 15x. The curve has a stationary point M where x = -1. Find the x-coordinate of the other stationary point on the curve.

A stationary point can be found when dy/dx = 0. The first thing we need to do is differentiate y to find dy/dx, and solve it for dy/dx = 0. This gives usdy/dx = 3x2 - 12x - 15 = 0 = (3x + 3)(x - 5) = 0 (using quadratic formula)Therefore x = -1 and x = 5.The question already gives us x = -1, so the answer is x = 5.

EG
Answered by Ellie G. Maths tutor

7511 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has an equation: (2x^2)*y +2x + 4y – cos(pi*y) = 17. Find dy/dx


using the substitution u=6-x^2 integrate (x^3)/(6-x^2)^1/2 with respect to x, between 1 and 2


Solve x(5(3^0.5)+4(12^0.5))=(48^0.5) to the simplest form. (4 Marks)


Find the stationary points on the curve: y = x^3 + 3x^2 +2x+5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences