Find the equation of the tangent to the curve x^3+yx^2=1 at the point (1,0).

We can find the gradient of a tangent to a curve at a point by finding dy/dx at x=1.Firstly we can rearrange the equation of the curve for y.(1) yx^2=1-x^3(2)y=x^{-2}-xThen we can differentiate the equation w.r.t x to find dy/dxdy/dx=-2x^{-3}-1At x=1 dy/dx=-2-1=-3To find the equation of a tangent at a point we can use y-y_{1}=m(x-x_{1})Inputting the values into this equation gives(1) y-0=-3(x-1)(2) y=-3x+3Which is the equation of the tangent to the curve at the point (1,0) so we're done.

OG
Answered by Ollie G. Maths tutor

3229 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the smallest possible value of the integral ∫(x-a)^2 dx between 0 and 1 as a varies?


Q15 from Senior Mathematical Challenge 2018: A square is inscribed in a circle of radius 1. An isosceles triangle is inscribed in the square. What is the ratio of the area of this triangle to the area of the shaded region? (Requires Diagram))


Let f(x)=x^3 - 2x^2 + 5. For which value(s) of x does f(x)=5?


Solve the equation 3^(2x+1)=1000


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning