Points A and B have coordinates (–2, 1) and (3, 4) respectively. Find the equation of the perpendicular bisector of AB and show that it may be written as 5x +3 y = 10.

Formula for a straight line y-y1=m(x-x1), where m is the gradient substituting in the values given to find the gradient we get 4-1=m(3+2), therefore m= 3/5the midpoint of the two points is ((x1 + x2)/2 , y1 + y2)/2)so the midpoint of AB is (0.5, 2.5)gradient of perpendicular bisector is the negative reciprocal of m which is -5/3using the equation of a line from above we get y-2.5=-5/3(x-0.5) Multiply both sides of the equation by 3 and we get 3y-7.5=-5(x-0.5)=-5x+2.5x Rearrange to get in the form stated in the question by adding 5x and adding 7.5 then we get 3y+5x = 10

PM
Answered by Paige M. Maths tutor

7691 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Points P and Q are situated at coordinates (5,2) and (-7,8) respectively. Find a) The coordinates of the midpoint M of the line PQ [2 marks] b) The equation of the normal of the line PQ passing through the midpoint M [3 marks]


Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2


Solve these simultaneous equations: 2x+y-5=0 and x^2-y^2=3


Particle A mass 0.4kg and B 0.3kg. They move in opposite direction and collide. Before collision, A had speed 6m/s and B had 2m/s. After collision B had 3m/s and moved in opposite direction. Find speed of A after collision with direction and Impulse on B.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences