Points A and B have coordinates (–2, 1) and (3, 4) respectively. Find the equation of the perpendicular bisector of AB and show that it may be written as 5x +3 y = 10.

Formula for a straight line y-y1=m(x-x1), where m is the gradient substituting in the values given to find the gradient we get 4-1=m(3+2), therefore m= 3/5the midpoint of the two points is ((x1 + x2)/2 , y1 + y2)/2)so the midpoint of AB is (0.5, 2.5)gradient of perpendicular bisector is the negative reciprocal of m which is -5/3using the equation of a line from above we get y-2.5=-5/3(x-0.5) Multiply both sides of the equation by 3 and we get 3y-7.5=-5(x-0.5)=-5x+2.5x Rearrange to get in the form stated in the question by adding 5x and adding 7.5 then we get 3y+5x = 10

PM
Answered by Paige M. Maths tutor

8122 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the line tangential to the function f(x) = x^2+ 1/ (x+3) + 1/(x^4) at x =2


Integrate cos(x)sin^2(x)


How do I find the equation of the normal line given a point on the curve?


Find the derivative of the following expression: y=x^3+2x^2+6x+5.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning