Find the interserction points of: The circle, x^2+(y-1)^2=18 and the line, y=x+1.

To solve this question, we have to use substitution. We substitute the line equation,y=x+1, into the circle equation so that we get, x^2 + (x+1-1)^2=18. This reduces to 2x^2 = 18, then dividing both sides by 2 gives us, x^2=9. We then have two values for x, x1=3 and x2=-3. Now to solve for the corresponding y co-ordinates, we can substitute our x co-ordinates into either one of the equations and then check the solution in the other. Substituting x1=3 into the line equation gives us y1=3+1=4, and checking in the circle equation gives us (3)^2 + (4-1)^2 =9+9=18, so it works for x1=3,y1=4. Substituting x2=-3 into the line equation gives us y2=-3+1=-2, and checking in the circle equation gives us (-3)^2 + (-2-1)^2 =9+9=18, so it works for x2=-3, y2=-2.We get that our co-ordinates are (x1,y1)=(3,4) and (x2,y2)=(-3,-2).

AR
Answered by Alex R. Maths tutor

2542 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are three boxes and one has a prize inside. You are told to choose a box. One of the other boxes is then opened, showing that it is empty. You are given the option to switch your choice to the other remaining box. Should you switch? Why?


Solve the next innequation: 12x-4>4x+12


Solve algebraically the simultaneous equations: 6x=5-2y 12.5=3x+3y


x : y = 11 : 3 x + y = 140 Find x and y


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences