Find the interserction points of: The circle, x^2+(y-1)^2=18 and the line, y=x+1.

To solve this question, we have to use substitution. We substitute the line equation,y=x+1, into the circle equation so that we get, x^2 + (x+1-1)^2=18. This reduces to 2x^2 = 18, then dividing both sides by 2 gives us, x^2=9. We then have two values for x, x1=3 and x2=-3. Now to solve for the corresponding y co-ordinates, we can substitute our x co-ordinates into either one of the equations and then check the solution in the other. Substituting x1=3 into the line equation gives us y1=3+1=4, and checking in the circle equation gives us (3)^2 + (4-1)^2 =9+9=18, so it works for x1=3,y1=4. Substituting x2=-3 into the line equation gives us y2=-3+1=-2, and checking in the circle equation gives us (-3)^2 + (-2-1)^2 =9+9=18, so it works for x2=-3, y2=-2.We get that our co-ordinates are (x1,y1)=(3,4) and (x2,y2)=(-3,-2).

AR
Answered by Alex R. Maths tutor

2922 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

(2x-5)(3x+2)(x+7) - Expand the brackets.


Solve the simultaneous equations: a) 2x + y = 18, b) x - y = 6


I'm good at maths, I swear


John is n years old where n is an whole number. Kim is three years younger than John and Vanessa is half of Kim's age. Write an expression for Vanessa's age in terms of n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning