How do I determine the domain and range of a composite function, fg(x) ?

Firstly I would state the rule that for any composite function fg, its domain is always the domain of g. If the student would like to know why this is the case, I would simplify the expression fg(x) to f(g(x)) and show by counter-examples that the funtion f(g(x)) can only ever exist if the function g(x) is able to produce a range of numbers from the domain. (range of g is a subset or an equal set to the domain of f).
Next I would explain the range of fg is dependant of the funtions themselves. An expression would need to be derived for fg, and hence using the known domain of g, the range of fg could be determined. This would best be explained by example e.g. f(x) = (x+4)^0.5 , 2(x)^2 - 3

RS
Answered by Rhys S. Maths tutor

10791 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the two real roots of the equation x^4 - 5 = 4x^2 . Give the roots in an exact form. [4]


Find the equation for the tangent to the curve y^3 + x^3 + 3x^2 + 2y + 8 = 0 at the point (2,1)


Using Integration by Parts, find the indefinite integral of ln(x), and hence show that the integral of ln(x) between 2 and 4 is ln(a) - b where a and b are to be found


Find the partial fraction decomposition of the expression: (4x^2 + x -64)/((x+2)(x-3)(x-4)).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning