The curve C has equation 16*y^3 + 9*x^2*y - 54*x = 0 a)Find dy/dx in terms of x and y

16y3 + 9x2y - 54x= 0 
a) Differentiate the terms separately dy/dx(16y3 + 9x2y - 54x) = dy/dx(16y3) + dy/dx(9x2y) - dy/dx(54x) = 48y2(dy/dx) + 18xy + 9x2(dy/dx) - 54 Implicit differentiation, treating y as a function of xdy/dx = (54 - 18xy)/(48y2+ 9x2) Factor out dy/dx and then cross multiply





JG
Answered by Joseph G. Maths tutor

4553 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation: 2(x^2)y + 2x + 4y – cos (πy) = 17 use implicit differentiation to find dy/dx in terms of x and y


The function f (x) is defined by f (x) = (1-x)/(1+x), x not equal to -1. Show that f(f (x)) = x. Hence write down f ^-1 (x).


How do you 'rationalise the denominator'?


Show that the integral of tan(x) is ln|sec(x)| + C where C is a constant.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning