Solve the inequality x^2 + 5x -24 ≥ 0.

There are a few different ways to approach this problem but the simplest and most easy to visualise solution comes from sketching the curve y = x2 + 5x - 24 and identifying the range of x-values for which y ≥ 0. The first step is to factorise the equation to find the points where the curve crosses the x-axis and moves from being greater than 0 to less than 0 or vice versa. In this example you need to find two numbers that add to make 5 and multiply to make -24, namely -3 and 8. The equation can then be written as y = (x + 8)(x - 3) and the points where the curve crosses the x axis are x = -8 and x = 3. Since the x2 term is positive, we know that this graph has a minimum rather than a maximum and so the regions where y ≥ 0 lie before it crosses the x-axis for the first time and after it crosses it for the second time. The solution is therefore: x ≥ 3 and x ≤ -8.

OW
Answered by Owen W. Maths tutor

8420 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

a x 10^4 + a x 10^2 = 24 240 where a is a number. Work out a x 10^4 - a x10^2 Give your answer in standard form.


Rationalise the denominator of 1/(4 + sqrt(3))


What is the distance between the points with co-ordinates (3,2) and (7,9)?


We have the following fractions: 6/16, 9/24, 12/32 and 15/35. Which fraction is not equivalent to 3/8?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning