Solve the inequality x^2 + 5x -24 ≥ 0.

There are a few different ways to approach this problem but the simplest and most easy to visualise solution comes from sketching the curve y = x2 + 5x - 24 and identifying the range of x-values for which y ≥ 0. The first step is to factorise the equation to find the points where the curve crosses the x-axis and moves from being greater than 0 to less than 0 or vice versa. In this example you need to find two numbers that add to make 5 and multiply to make -24, namely -3 and 8. The equation can then be written as y = (x + 8)(x - 3) and the points where the curve crosses the x axis are x = -8 and x = 3. Since the x2 term is positive, we know that this graph has a minimum rather than a maximum and so the regions where y ≥ 0 lie before it crosses the x-axis for the first time and after it crosses it for the second time. The solution is therefore: x ≥ 3 and x ≤ -8.

OW
Answered by Owen W. Maths tutor

8509 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Sketching a quadratic


What is the difference between LCM and HCF?


How do you subtract a mixed fraction from another?


An amount of money was invested for 8 years. It earned compound interest at 2.5% per year. After 8 years the total value of the investment was £11,696.67. Work out the total interest earned.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning