Solve the inequality x^2 + 5x -24 ≥ 0.

There are a few different ways to approach this problem but the simplest and most easy to visualise solution comes from sketching the curve y = x2 + 5x - 24 and identifying the range of x-values for which y ≥ 0. The first step is to factorise the equation to find the points where the curve crosses the x-axis and moves from being greater than 0 to less than 0 or vice versa. In this example you need to find two numbers that add to make 5 and multiply to make -24, namely -3 and 8. The equation can then be written as y = (x + 8)(x - 3) and the points where the curve crosses the x axis are x = -8 and x = 3. Since the x2 term is positive, we know that this graph has a minimum rather than a maximum and so the regions where y ≥ 0 lie before it crosses the x-axis for the first time and after it crosses it for the second time. The solution is therefore: x ≥ 3 and x ≤ -8.

OW
Answered by Owen W. Maths tutor

8500 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

y is inversely proportional to x. When y = 2, x = 3. Work out the value of y when x = 18.


c) Sharon is organising an event. The tickets cost 12 pounds each. Sharon paid 200 pounds for the cost of the event. How many tickets will Sharon have to sell to make a profit? (2 marks)


P (–1, 4) is a point on a circle, centre O which is at the origin. Work out the equation of the tangent to the circle at P. Give your answer in the form y = mx + c


A gym has 275 members. 40% are bronze members. 28% are silver members. The rest are gold members. Work out the number of gold members.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning