Find the range of values of k for which x²+kx-3k<5 for some x, i.e. the curve y=x²+kx-3k goes below y=5

We know that x²+kx-3k-5<0 for some x for the values the k that we are trying to find.This will only occur when the curve has two distinct intersections with the x-axis. There are two distinct intersections only when the discriminant of the quadratic equation is more than 0. So k²-4(1)(-3k-5)>0 which is simplified as k²+12k+20>0.To find the values of k which satisfy this we solve k²+12k+20=0 by factorising and getting (k+10)(k+2)=0 so k=-10 or k=-2.Using these intersections with the x-axis we can sketch the graph of this quadratic and see that it is greater than 0 when k<-10 or k>-2. Therefore the solution to the question is k<-10 or k>-2.

PS
Answered by Peter S. Maths tutor

3557 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Prove that f(x) the inverse function of g(x) where f(x)= - 3x–6 and g(x)= - x/3–2


Find D when 8x^3-12x^2-2x+D is divided by 2x+1 when the remainder is -2


A football is kicked at 30 m/s at an angle of 20° to the horizontal. It travels towards the goal which is 25 m away. The crossbar of the goal is 2.44 m tall. (A) Does the ball go into the goal, hit the crossbar exactly, or go over the top?


What is the sum of the first n terms of a geometric sequence and where does it come from?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences