Find the range of values of k for which x²+kx-3k<5 for some x, i.e. the curve y=x²+kx-3k goes below y=5

We know that x²+kx-3k-5<0 for some x for the values the k that we are trying to find.This will only occur when the curve has two distinct intersections with the x-axis. There are two distinct intersections only when the discriminant of the quadratic equation is more than 0. So k²-4(1)(-3k-5)>0 which is simplified as k²+12k+20>0.To find the values of k which satisfy this we solve k²+12k+20=0 by factorising and getting (k+10)(k+2)=0 so k=-10 or k=-2.Using these intersections with the x-axis we can sketch the graph of this quadratic and see that it is greater than 0 when k<-10 or k>-2. Therefore the solution to the question is k<-10 or k>-2.

PS
Answered by Peter S. Maths tutor

3765 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find values of x in the interval 0<x<360 degrees. For which 5sin^2(x) + 5 sin(x) +4 cos^2(x)=0


If 1/(x(a-x)) is equivalent to B(1/x + 1/(a-x)), Express 'B' in terms of 'a'


Mechanics (M1): Particle moving on a straight line with constant acceleration (Relationships of the 5 Key Formulae)


Solve the equation x=4-|2x+1|


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences