Find the range of values of k for which x²+kx-3k<5 for some x, i.e. the curve y=x²+kx-3k goes below y=5

We know that x²+kx-3k-5<0 for some x for the values the k that we are trying to find.This will only occur when the curve has two distinct intersections with the x-axis. There are two distinct intersections only when the discriminant of the quadratic equation is more than 0. So k²-4(1)(-3k-5)>0 which is simplified as k²+12k+20>0.To find the values of k which satisfy this we solve k²+12k+20=0 by factorising and getting (k+10)(k+2)=0 so k=-10 or k=-2.Using these intersections with the x-axis we can sketch the graph of this quadratic and see that it is greater than 0 when k<-10 or k>-2. Therefore the solution to the question is k<-10 or k>-2.

PS
Answered by Peter S. Maths tutor

3807 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation f(x) =x^3 + 3x is drawn on a graph between x = 0 and x = 2. The graph is then rotated around the x axis by 2π to form a solid. What is the volume of this solid?


How do I find the area under a curve between two points?


Solve Inx + In3 = In6


A curve, C, has equation y =(2x-3)^5. A point, P, lies on C at (w,-32). Find the value of w and the equation of the tangent of C at point, P in the form y =mx+c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning