How can I remember trig identities?

Trigonometric identities are sometimes tricky, as they are very hard to distinguish one from another. The best way of doing it is obviously by practising, but one thing I always find helpful is to give an example. In the case of cos(a+b), we expand it as cos(a) * cos(b) - sin(a) * sin(b). How can I check that I am sure? Well, if b = 0, then the right hand side term becomes cos(a)*1-sin(a)*0 = cos(a) = cos(a+0). Checked. Is cos(-a-b) = cos(a+b)? Yes, it is. cos(-a)*cos(-b) = cos(a) * cos(b), as cos is an even function and sin(-a)sin(-b) = -sin(a)(-sin(b)) = sin(a)*sin(b), as sin is odd. Hence the identity is unchanged.

So, we have taken to important properties of trigonometric functions which are still available on our guessed identity, thus we strongly believe is true, which it is.

MS
Answered by Marius S. Maths tutor

5591 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

For which values of k does the quadratic equation 2x^2+kx+3=0 only have one unique solution?


Find values of y such that: log2(11y–3)–log2(3) –2log2(y) = 1


The quadratic equation (k+1)x^2 + (5k - 3)x + 3k = 0 has equal roots. Find the possible values of k


Differentiate the function y=4sqrt(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning