How can I remember trig identities?

Trigonometric identities are sometimes tricky, as they are very hard to distinguish one from another. The best way of doing it is obviously by practising, but one thing I always find helpful is to give an example. In the case of cos(a+b), we expand it as cos(a) * cos(b) - sin(a) * sin(b). How can I check that I am sure? Well, if b = 0, then the right hand side term becomes cos(a)*1-sin(a)*0 = cos(a) = cos(a+0). Checked. Is cos(-a-b) = cos(a+b)? Yes, it is. cos(-a)*cos(-b) = cos(a) * cos(b), as cos is an even function and sin(-a)sin(-b) = -sin(a)(-sin(b)) = sin(a)*sin(b), as sin is odd. Hence the identity is unchanged.

So, we have taken to important properties of trigonometric functions which are still available on our guessed identity, thus we strongly believe is true, which it is.

MS
Answered by Marius S. Maths tutor

5829 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let y=arcsin(x-1), 0<=x<=2 (where <= means less than or equal to). Find x in terms of y, and show that dx/dy=cos(y).


Express (5sqrt(3)-6)/(2sqrt(3)+3) in the form m+nsqrt(3) where m and n are integers. [Core 1]


A curve has the equation y = (x^2 - 5)e^(x^2). Find the x-coordinates of the stationary points of the curve.


Use implicit differentiation to find dy/dx of: 2(x^2)y + 2x + 4y - cos((pi)y) = 17


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning