Show how to derive the quadratic formula

You have a general quadratic of the form: ax^2 + bx + c = 0, where a,b,c are constants (although is consistent for functions). Divide by a (assuming a/=0, this would not be a quadratic in that case):x^2 + (b/a)x + c/a = 0Complete the square on the first 2 terms:(x+(b/2a))^2 - (b/2a)^2Add the 3rd term back on:(x+(b/2a))^2 - (b/2a)^2 + c/a = 0Rearrange to have the x term on its own:(x+(b/2a))^2 = (b/2a)^2 - c/aTake the square root:x+(b/2a) = +/-sqrt{(b/2a)^2 - c/a}Subtract b/2a:x = -b/2a +/- sqrt{(b/2a)^2 - c/a}Putting the right hand side over a common denominator:x = [-b +/- sqrt{b^2-4ac}]/2a

TF
Answered by Tom F. Maths tutor

3107 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate x/(x^2 + 3) ?


Find the values of x, where 0 < x < 360, such that x solves the equation: 8(tan[x])^2 – 5(sec[x])^2 = 7 + 4sec[x]


Integrate, by parts, y=xln(x),


Use chain rule and implicit differentiation to find dy/dx for y^3 = 1 + 3*x^2, then show that they are equal


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences