A rock fragment weighing 50N is displaced from the top of a cliff and falls 0.12 km to the ground. Calculate the kinetic energy (in J) of the rock just before it hits the ground. Assume air resistance is negligible.

Applying the law of conversation of energy, the gravitational potential energy (GPE) stored by the rock before falling is transformed into other types of energy as it falls. Without any external forces acting upon the object (i.e. negligible air resistance), this energy can be assumed to be converted to kinetic energy (KE). We cannot determine KE directly as we would need to know the velocity, which we do not have the means to calculate. Thus, we will calculate GPE for the rock at the top of the cliff and this value will be equal to the KE just before it hits the ground:GPE = mgh. -----> We are given 50N = mg = F , and thus the expression is simplified to Fh (more commonly recognised as Fd = work done). GPE = 50*120 = 6000 J Note: remember to convert to SI units! 0.12 kilometres = 120 metres

JH
Answered by Jack H. Physics tutor

2078 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

State Newton's 3 Laws in words and/or mathematically


A ball of mass 500g is dropped from rest 2m above the ground. When it reaches the ground it is travelling at 5m/s. How much energy has been dissipated?


Alice drops an apple from a height of 2 m above the ground. Assuming there is no air resistance, what is the speed of the apple when it hits the ground?


a )John heats up 2kg of water from 20 degrees c to 80 degrees c. How much energy input did this require? b )When John weighs the water at the end, he has less than he started with. Why might this be? c) What hazards are in this experiment?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning