By first expanding the brackets, differentiate the equation: y=(4x^4 + 3x)(2x^2 - 9)

In this case the question has given you a clue as to the order that you solve the question. So, first we need to expand the brackets, multiplying each term by one another to get; y=8x^6 - 36x^4 + 6x^3 - 27x.
We then need to differentiate the equation we have found by multiplying each coefficient of x by the power of each x term, so 6x^2 and then subtracting 1 from each power of x. For example 6x^3 would become 18x^2 (6 x 3 =18, 3 - 1=2)
We then reach the final answer of dy/dx= 48x^5 - 144x^3 + 18x^2 - 27

PA
Answered by Patrick A. Maths tutor

3269 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the derivative with respect to x of the function f(x)=1+x^3+ln(x), x>0 ?


Given that 2cos(x+50)°=sin(x+40)° show tan x° = tan 40°/3


Solve the simultaneous equations: y - 3x + 2 = 0 y^2 - x - 6x^2 = 0


Suppose that you go to a party where everyone knows at least one other person, you get a bit bored and wonder whether there are at least two people which know the same number of people there.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences