Find the derivative of x(x+3)^5

First we use the product rule, so we multiply x by the derivative of (x+3)5. To find the derivative of (x+3)5 we use the chain rule. So we have 5(x+3)4. So the first part of our product rule calculation is 5x(x+3)4. The next part of our product rule calculation is the easy bit, (x+3)5 multiplied by the derivative of x. Using the general power rule, we see the derivative of x is 1. So the second part of our product rule calculation is just (x+3)5.
So our final answer is (x+3)5 + 5x(x+3)4. Which we can factorise to (x+3)4(5x+x+3) = (x+3)4(6x+3).

JY
Answered by John Y. Maths tutor

3553 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact solution to ln(2y+5) = 2 + ln(4-y)


Find the turning points on the curve with the equation y=x^4-12x^2


Integrate (sin(2x) + e^(2x+3))dx


What is Mathematical Induction?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning