The rectangular hyperbola H has parametric equations: x = 4t, y = 4/t where t is not = 0. The points P and Q on this hyperbola have parameters t = 1/4 and t = 2 respectively. The line l passes through the origin O and is perpendicular to the line PQ.

This question asks us to find the cartesian equation of l.
First we must find the points P and Q. To do this we substitute t with 1/4 to find P and substitute t with 2 to find Q.Doing this we get the coordinates for P and Q.For P: x= 4(1/4) = 1 y= 4/(1/4) = 16 P(1,16)For Q: x = 4(2) = 8 y = 4/2 = 2 Q(8,2)
The equation of line l is found by using the standard method y - y* = m(x - x*) where y* and x* are points on the line and m is the gradient.We must find the gradient of PQ before we find the gradient of l. To do this we simply use dy/dx: (Gradient PQ) = (16-2)/(1-8) = -(14/7) = -2
As PQ is perpendicular to l, we follow this formula. (Gradient of l) * (Gradient PQ) = -1: Gradient of l must be 1/2 as gradient of l = -1/(Gradient PQ)
We can now use y - y* = m(x - x*). We know that l passes through the origin, and therefore x* = 0 and y* = 0: y - 0 = 1/2(x - 0) y = 1/2x (this is the equation of l, as required)

LB
Answered by Luca B. Further Mathematics tutor

3492 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I find the square root of a complex number?


Show that the square of any odd integer is of the form (8k+1)


How do you deal with 3 simultaneous equations? (Struggling with Q7 of AQA specimen paper 1)


A curve has equation y=(2-x)(1+x)+3, A line passes through the point (2,3) and the curve at a point with x coordinate 2+h. Find the gradient of the line. Then use that answer to find the gradient of the curve at (2,3), stating the value of the gradient


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning