Explain how a deletion mutation in a strand of DNA can affect the primary, secondary and tertiary structures of the protein for which it codes.

A deletion in a strand of DNA would result in a frameshift mutation, where the other base pairs following the deletion would move 'to the left' which would change the base pairs throughout the rest of the strand of DNA. This would result in a different mRNA strand being formed by pairing with the mutated DNA strand during transcription. During translation at the ribosome, the tRNA molecules bonded to their respective amino acids would create a different amino acid sequence due to the altered mRNA sequence, this would effect the primary structure of the protein (polypeptide). The altered amino acid sequence would then form a different secondary structure due to the hydrogen bonds forming between the different amino acids. An altered secondary structure results in a different tertiary structure, as different parts of the sequence would interact in different ways, creating ionic or disuphide bonds, or hydrophobic/philic regions in different places to the position in which they would reside in the protein coded from the original DNA sequence.

WS
Answered by William S. Biology tutor

10940 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

The events that take place during interphase and mitosis lead to the production of two genetically identical cells. Explain how.


People who have McArdie's disease produce less ATP than healthy people. As a result, they are not able to maintain strong muscle contraction during exercise. Use your knowledge of the sliding filament theory to suggest why (AQA BIOL5)


How does a vaccine lead to the production of antibodies against a virus?


Explain the process of translation for protein synthesis


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning