∫(1 + 3√x + 5x)dx

For each term the aim is to raise the power of x by 1 and divide by the new power. 

For this question, each part of the expression can be looked at seperately to make things a bit easier:

∫(1 + 3√x + 5x)dx = ∫1dx + ∫3√xdx + ∫5xdx

The first part of the expression can be looked at as 1x0, so the integral of this is 1x = x

The second part is a bit more difficult as the power of x isnt a whole number so it can be written as 3x1/2, the integral of this being     3x3/2*(2/3) = 2x3/2, (the 2/3 comes from dividing by the new power).

Finally the integral of 5x is easier as the power of x is a whole number and so is easily calculated as 5/2*x2.

Then finally recombining the three part the final answer is:

∫(1 + 3√x + 5x)dx = x + 2x3/2 + (5/2)x+ c

(c is constant and can take any value, this isnt a majorly important part of the question)

MT
Answered by Mary T. Maths tutor

8504 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the indefinite integral ∫5exp(3-4x)dx ?


Find dy/dx for y=5x^3-2x^2+7x-15


The curve C has the equation: y=3x^2*(x+2)^6 Find dy/dx


Core 3: Find all the solutions of 2cos(2x) = 1-2sin(x) in the interval 0<x<360


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning