∫(1 + 3√x + 5x)dx

For each term the aim is to raise the power of x by 1 and divide by the new power. 

For this question, each part of the expression can be looked at seperately to make things a bit easier:

∫(1 + 3√x + 5x)dx = ∫1dx + ∫3√xdx + ∫5xdx

The first part of the expression can be looked at as 1x0, so the integral of this is 1x = x

The second part is a bit more difficult as the power of x isnt a whole number so it can be written as 3x1/2, the integral of this being     3x3/2*(2/3) = 2x3/2, (the 2/3 comes from dividing by the new power).

Finally the integral of 5x is easier as the power of x is a whole number and so is easily calculated as 5/2*x2.

Then finally recombining the three part the final answer is:

∫(1 + 3√x + 5x)dx = x + 2x3/2 + (5/2)x+ c

(c is constant and can take any value, this isnt a majorly important part of the question)

MT
Answered by Mary T. Maths tutor

8367 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the normal to the curve y=2x^3 at the point on the curve where x=2. Write in the form of ax+by=c.


f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


integrate 5x + 3(square root of x)


Find the first 3 terms, in ascending powers of x, of the binomial expansion of (2 – 9x)^4 giving each term in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning