1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142

1a) 1000/7=142.8.... Therefore there are 142 multiples of 7 between 1 and 1000
Therefore the sum of series from 1 to 142 is 1/7th of the solution
Calculation:70.5142143=71071

1b) The sum of (7r+2) from r=1 to r=147 is equal to the sum of 7
(the sum of (r) from r=1 to r=147) plus (the sum of (2) from r=1 to r=147)
Calculation:7(0.5142143) + 142*2 =71355

JF
Answered by Jack F. Maths tutor

5331 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the turning point on the curve f(x) = 2x^2 - 2x + 4


7x+5y-3z =16, 3x-5y+2z=-8, 5x+3y-7z=0. Solve for x,y and z.


A line L is parallel to y = 4x+5 and passes through the point (-1,6). Find the equation of the line L in the form y = ax+b.


Two lines have equations r = (1,4,1)+s(-1,2,2) and r = (2,8,2)+t(1,3,5). Show that these lines are skew.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences