1. (a) Find the sum of all the integers between 1 and 1000 which are divisible by 7. (b) Hence, or otherwise, evaluate the sum of (7r+2) from r=1 to r=142

1a) 1000/7=142.8.... Therefore there are 142 multiples of 7 between 1 and 1000
Therefore the sum of series from 1 to 142 is 1/7th of the solution
Calculation:70.5142143=71071

1b) The sum of (7r+2) from r=1 to r=147 is equal to the sum of 7
(the sum of (r) from r=1 to r=147) plus (the sum of (2) from r=1 to r=147)
Calculation:7(0.5142143) + 142*2 =71355

JF
Answered by Jack F. Maths tutor

5982 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following: 3/2 x^(3/4) + 1/3 x^(-1/4)


7x+5y-3z =16, 3x-5y+2z=-8, 5x+3y-7z=0. Solve for x,y and z.


The curve C has the equation: 16y^3 +9x^2y-54x=0, find the x coordinates of the points on C where dy/dx = 0


A block of temperature H=80ºC sits in a room of constant temperature T=20ºC at time t=0. At time t=12, the block has temperature H=50ºC. The rate of change of temperature of the block (dH/dt) is proportional to the temperature difference of the block ...


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning