Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x

Question is asking for gradient at x = 0, y = ln2. e^2y = 5 - e^-x. Differentiation with respect to x: 2e^2y * dy/dx = e^-x . dy/dx = e^-x / 2e^2y. At x = 0, y = ln2 ~ dy/dx = e^0 / 2e^2ln2 = 1 / 2e^ln4 = 1 / 2 * 4 = 1/8. Gradient = 1/8

LK
Answered by Lokmane K. Maths tutor

5384 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y=((4x+1)^3)sin2x. Find dy/dx.


The circle (x-3)^2 +(x-2)^2 = 20 has centre C. Write down the radius of the circle and the coordinates of C.


Find the gradient of y=x^2-6x-16 at the point where the curve crosses the x-axis


œintegrate xe4x in respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning