Find the gradient at the point (0, ln 2) on the curve with equation e^2y = 5 − e^−x

Question is asking for gradient at x = 0, y = ln2. e^2y = 5 - e^-x. Differentiation with respect to x: 2e^2y * dy/dx = e^-x . dy/dx = e^-x / 2e^2y. At x = 0, y = ln2 ~ dy/dx = e^0 / 2e^2ln2 = 1 / 2e^ln4 = 1 / 2 * 4 = 1/8. Gradient = 1/8

LK
Answered by Lokmane K. Maths tutor

5168 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When finding the turning points of a curve, how can I tell if it is a maximum, minimum or a point of inflection?


integrate (2x^4 - 4/sqrt(x) + 3)dx


A man travels 360m along a straight road. He walks for the first 120m at 1.5ms-1, runs the next 180m at 4.5ms-1, and then walks the final 60m at 1.5ms-1. A women travels the same route, in the same time. At what time does the man overtake the women?


Solve the inequality x^2 - 9 > 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning