Differentiate (x^2)cos(3x) with respect to x

First we start off by seeing that we are multiplying together two functions both containing x, so we want to apply the product rule. As we know the product rule is (f(x)g(x))'=f(x)g'(x)+f'(x)g(x) so we can assign f(x) to x^2 and g(x) to cos 3x. We can differentiate x^2 using the power rule, finding our new factor as 12 = 2, and decreasing the power by 1, giving us f'(x)=2x. We can then also differentiate our g(x), cos3x. For this we can see we need to use the chain rule. We can set u=3x and hence g(x) can be simplified to cos(u) which we know how to differentiate. We differentiate u, giving us u'=3 and differentiate cos(u), giving us -sin(u). We then multiply together (dy/du) and (du/dx), so -sin(u) * 3 = -3sin(u). We can then substitute 3x back in for u as u=3x, giving us g'(x)=-3sin(3x). Now that we have f'(x) and g'(x) we can apply the product rule, giving us the answer as (x^2)-3sin(3x) + 2x * cos(3x), so -3(x^2)sin(3x) + 2xcos(3x).

AB
Answered by Arthur B. Maths tutor

9041 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of ((2(7x^(2)-xe^(-2x))-5)/x) . Given that y=27 at x=1, solve the differential equation dy/dx=((2(7x^(2)-xe^(-2x))-5)/-3x).y^(2/3) in terms of y.


Differentiate y = (3x^3+2x+7)/x^(1/2)


At time t = 0, a particle is projected vertically upwards with speed u m s–1 from a point 10 m above the ground. At time T seconds, the particle hits the ground with speed 17.5 m s–1. Find the value of u and T and evaluate the model. (AS mechanics)


State the interval for which sin x is a decreasing function for 0⁰ ≤ x ≤ 360⁰.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning