Express '2x^2 + 8x + 30' in the form 'a(x+b)^2 + c'

b = B/2A = 8/(2x2) =8/4 = 2
c = C-((B^2)/4A) = 30-((8^2)/(4x2)) = 30-64/8 = 30-8 = 22
=> 2x^2 + 8x + 30 = 2(x+2)^2 + 22

CC
Answered by Charles C. Maths tutor

4312 Views

See similar Maths Scottish Highers tutors

Related Maths Scottish Highers answers

All answers ▸

Find the x-coordinates of the stationary points on the graph with equation f(x)= x^3 + 3x^2 - 24x


Determine for what values of c, f(x)=4x^2-(2c+8)x+4 has no real roots.


y=x^3-3x^2+2x+5 a)Write down the coordinates of P the point where the curve crosses the x-axis. b)Determine the equation of the tangent to the curve at P. c)Find the coordinates of Q, the point where this tangent meets the curve again.


Differentiate the equation: 3x^2 + 4x + 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning