Find the volume of revolution when the curve defined by y=xe^(2x) is rotated 2*pi radians about the x-axis between x=0 and x=1

This is a standard question that may be found in a C4 mathematics paper. Students should use knowledge of the volume of revolution formula V = piint_{a}^{b} y2dx to find the expression V = piint_{0}^{1} (x2e4x) dx.
Using the integration by parts formula (below), one can yield an intermediary equation, namely V = pi*[e4/4-(1/2)int_{0}^{1} (xe4x)]. Application of the integration by parts formula again solves the second integral of xe4x, and substituting in the limits of 0 and 1 yields a final answer of: (pi/32)(5e4-1).

Integration by parts formula: int(uv') = uv - int(u'v).

HS
Answered by Hanish S. Maths tutor

3667 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Make a the subject of 3(a+4) = ac+5f


A 2.4 m long plank of mass 20kg has 2 pins, each 0.5 meters from each respective plank end. A person of mass 40kg stands on the plank 0.1m from one of the pins. Calculate the magnitude of reactions at the pins for this structure to be in equilibrium.


Using the Quotient rule, Find dy/dx given that y = sec(x)


Given that y=4x^3-(5/x^2) what is dy/dx in it's simplest form?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning